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Abstract

A statistical decision criterion is used to determine
when a sufficient number of independent samples
have been made of a random variable in order to
statistically guarantee the proximity (within error €)
of the current estimated expected value to the actual
expected value. When information is available
regarding the distribution being estimated (e.g.,
parametric, normal, or bounds on the random
variable) these assumptions enable use of specialized
statistical decision criteria that may be more
efficient. We examine four decision criteria that
make varying assumptions about characteristics of
the random variable. We evaluate these criteria on
real data from three selection problems from NASA
applications, quantifying the value of such
information on the cost and accuracy of each
decision criteria.  We find that the algorithm
presuming normality (e.g., Nadas) performs better
than two-sided bound (e.g. Bernstein), and the two-
sided bounds perform better than a one-sided bound
(e.g. Chernoff) algorithm.

1 Introduction

Decision criteria enable a choice among a set of possible
hypotheses (e.g., actions, parameters) when the consequence
of the choice depends on the interactions of the hypothesis
in some stochastic environment. We can determine the
value of each choice from sample interactions at a cost to
our system. Decision criteria can be applied to many
problems, including learning statistical decision models
[Maron & Moore, 199], optimizing function parameters
[Dubrawski & Schneider, 1997], design optimization
[Fukunaga et al, 1997], algorithm selection [Chien et al

[999], or optimizing planner control strategies [Engelhardt
& Chien, 2000, Gratch & DelJong 1994]. The selection of
an appropriate decision criterion to use for a particular data
set depends heavily on known features of the data. This
paper examines four decision criteria: a probability
approximately correct (PAC) criteria [Valiant, 1984],
Chernoff Bounds [Hagerup & Rub, 1990], Hoeffding’s

Stopping rule | Assumption

Nadas (PAC) Random variable distributed normally

Chernoff Random variable has upper bound B

Hoeffding Random variable is bounded by [a, 5]

Bernstein Maximum difference between random variable
mean and single instance bounded by M

inequality [Hoeffding, 1963], and Bernstein’s inequality
[Bernstein, 1946]. Each of these criteria uses information
about the data in order to converge faster than the costly
brute-force alternatives.

Table 1: List of the assumption made for each decision criteria

Parametric decision criteria assume that the random variable
distribution is based on a distribution function given some
parameter, and the goal is to estimate the parameter. Our
parametric PAC algorithm, based on a stopping rule
introduced in [Nadas, 1969], assumes that the random
variable distribution is normal, and requires fewer samples.
In a specific domain, if the distribution of the data cannot be
estimated by a common distribution function, non-
parametric (distribution-free) bounds (e.g., due to Chernoff,
Hoeftding, and Bernstein) may be substituted for the
normal-theory probabilities above. The complexity of these
bounds are described by their rate of convergence: the
probability that the estimated expected utility is not within
error € of the actual expected utility goes to O exponentially
fast as the number of samples m increases [Hoeffding,
1963]. Because of the special nature of the utility estimates
(1.e., sample means), these bounds typically give accurate




results due to the concentration of measure phenomenon
[Talagrand, 1991]. Chernoff bounds require the upper
bound of the data (“one-sided” bound) be specified.
Hoeffding’s inequality makes the assumption that the data
fall within a given [a, b], and will converge at least as fast as
Chernoff bounds because of the additional information
(“two-sided” bound). Bernstein’s inequality makes the
assumption that the maximum variance of a single sample
utility from the expected utility is bounded by a value M
(“two-sided” bound), which further improves convergence
properties of the criterion. Convergence does not guarantee
accuracy when the random variable does not satisfy the
imposed assumptions, and this discrepancy is illustrated in
the accuracy measure.

2  The Statistical Decision Problem

Statistical decision criteria can be used to select a particular
hypothesis from a set of hypotheses, based on some
ordering scheme such as maximum expected value, when
the actual ranking of the hypotheses is not known. The
choice of hypothesis will depend on an estimate of the true
ranking, and this estimate can be obtained through sampling
the hypothesis in the real world. The outcome of sampling
the hypotheses in the real world will depend on the current
state of the world. Moreover, sampling will have a cost,
such as a monetary or temporal cost.

More specifically, a statistical decision criterion is
given a set of hypotheses H from which it must select a
single “best” hypothesis. There is also a set of
“experiments,” F, which take a hypothesis and apply it to
the state of the world ®, which is unknown and
unpredictable, and returns an outcome z in the space Z of
possible outcomes. A utility evaluator assigns a utility to
the outcome z based on the experiment e, the hypothesis #,
and the state of the world € {Raiffa & Schlaifer, 1961]. In
this paper, we will use the notation U(h,) to mean the actual
expected utility of hypothesis A, and U(h;) to mean the
estimated expected utility distribution of hypothesis #;,
based on the expected utility of the set of samples taken.

In order to determine how the sample outcome should
impact the ranking, the utility of that sample is factored into
the current estimate of the utility distribution.  An
assessment is made as to the likelihood of the state € and the
outcome z to scale the utility of each sample appropriately.
When a sufficient number samples have been made in the
current world to statistically guarantee the error for
estimated expected utility relative to alternative hypotheses,
the statistical decision criteria can estimate the actual
ranking of the set of hypotheses.

Decision criteria do not guarantee absolute accuracy
because a complete guarantee on accuracy is impossible
without an infinite number of samples. Instead, they
guarantee the upper limit of error in the ranking based on
estimated expected utility will be some given error €, which
is the upper bound on the difference between the actual

expected utility of a single non-selected hypothesis and the
actual expected utility of the selected hypothesis.

3 Ranking Algorithm

We use a limited number of hypotheses, and sample
sequentially using the decision criterion as a stopping rule in
order to increase efficiency over fixed-sample techniques
[Gratch et al.,, 1994]. In the actual evaluation, a small
number of initial samples (7 per hypothesis) are taken to
generate a starting expected utility and estimated variance
and to select the top hypothesis thus far (hy). The
algorithm checks to see whether all of the pairwise
comparisons between h,, and the other hypotheses satisfy
the particular decision criteria. If the comparisons satisfy
the criterion, no more samples are taken. If the comparisons
fail to satisfy the criterion, additional samples are taken until
the criterion is satisfied for all of the comparisons. After
each sample, the algorithm reevaluates the choice of the
selected hypothesis. The choice of which pair of hypotheses
to sample is based on rational selection for the Nadas
criterion, described below, and estimates on the number of
samples required to satisfy the criteria for the non-
parametric criteria, described in the algorithm sections.
There are many possible decision criteria that can be
plugged in to the evaluation function. Some simplify the
problem by assuming that the stochastic data is normally
distributed, while others do not. Sampled utility is averaged

over m samples to calculate U(h). Due to the central limit

theorem, the difference U(h)—U(h) can often be
approximated by a normal distribution. If desired, the
validity of the normal assumption can be verified using tests
such as the quantile-quantile (Q-Q) [MathSoft, 1998].

3.1 Blocking

We use a statistical technique called "blocking”, in which
we analyze the distribution formed by the difference of two
random variables directly in order to show the mean of one
is greater than the mean of the second [Buringer, Martin,
Schriever, 1980]. This is more efficient in cases where the
distributions are positively correlated (as in our domains
where they are variant attribute vectors or algorithms).

The blocked distribution is the pairwise comparison of
two different random variable distributions, A-B, which
enables the decision criteria to rank based on dominance, or
decide that the distributions are indistinguishable
(indifference). Dominance is the area of the distribution
above 0, or the probability that random variable A will be
greater than random variable B for a random sample.
Indifference occurs when the mean of the blocked
distribution falls within [-g, €], and the two hypotheses are
so close that the criterion cannot distinguish between the
two. Using blocking, we enable the decision criteria to
guarantee that one random variable is expected to perform
better than another, or whether the difference falls with the
error allocated to the decision.



3.2 Rational Selection

We can use discrepancies based on the decision criteria
to determine how many training examples to allocate to
each comparison, given the error bound on the probability
of a mistake, an estimate of the difference in expected
utility, and an estimate of the variance of each hypothesis:

The decision requirement is only that the sum of the
selection errors for the pairwise comparisons remains less
than the given bound. If one pairwise comparison requires
many more samples to achieve the same amount of accuracy
as another pairwise comparison, then if the first comparison
is allowed to have more error and the second is allowed less,
the overall cost of achieving those local requirements might
be reduced. In practice, this method significantly reduces
the number of samples necessary to achieve the requirement
for certain domains. In general, we cannot solve the
allocation problem optimally since estimates for parameters
required to compute optimal solutions will include sampling
error. For more information regarding these techniques, see
[Gratch ef al., 1994, Chien et al. 1995].

Only the Nddas decision criterion uses this estimate to
determine how to rationally allocate the samples such that
the overall selection error is bounded appropriately and the
criterion is satisfied. This is because the concept of
rationally is tied to distributing the required confidence over
the n pairwise comparisons, and the non-parametric criteria
are calculated individually for each comparison and do not
include the concept of confidence as an input parameter.

3.3 Expected Utility

Expected utility is the average utility of hypothesis #; in
domain @ over an infinite number of runs. In reinforcement
learning, it is interpreted as expected reward [Kaelbling,
1990]. As described earlier, utility can be determined by
sampling hypothesis /; on domain 8 and calculating the
utility of the outcome z, based on utility function /. Thus,
the calculation of the expected utility generally takes into
account the probability of the current state of the world.

Uh) =) (Pr(h,0)»u(z, ) (1

Ji=0

In our simulations, all /; in H and 8 in © are equally likely,
as we are searching a space of uniformly distributed random
numbers, so Pr(H) is uniform across all A; in H.

4 Statistical Decision Criteria

For each of the four decision criteria, we will describe the
assumptions made by the criterion, the equation to be
satisfied, and the formula for calculating the number of
samples required for satisfaction. For the non-parametric
criteria, the formula for approximating the number of
samples required to satisfy the criterion is used to determine
the difficulty of the comparison. The largest estimated
value of m for a pairwise comparison indicates that the next
samples should be for that comparison.

The bounds on the random variables required by the
non-parametric decision criteria are often unknown before
the sampling begins. For the three non-parametric criteria
that require bounds, we created general functions to
generate estimates of those bounds from the initial samples.
We ran a version of the algorithm that recalculated the
bounds after each subsequent sample, and did not find
significant improvement from the preliminary analyses.

4.1 Probably Approximately Correct (Nadas)

Much previous work in the machine learning community
has focused on Probably Approximately Correct (PAC)
learning [Valiant, 1984]. With the PAC decision criterion,
an algorithm makes decisions with a given confidence
(probability 1-6, for small 3) to select a good hypothesis
(within error € of the best hypothesis). Because any specific
decision either satisties or does not satisty this requirement,
the PAC criterion holds that over a large number of
decisions that the accuracy rate must meet 1-9.

We use the stopping rule proposed in [Nadas, 1969],
which includes the normality assumption to calculate
confidence based on the number of samples m. We are
requiring the satisfaction of the decision criterion over a set
of pairwise comparisons, so the selection error (8) is
distributed to each comparison using the rational allocation
methods described above. The normality assumption and
rational allocation, along with the sequential sampling
algorithm, which sacrifices additional samples for average-
case accuracy', make the Nadas PAC model extremely
efficient in practice.

The requirement that a selected hypothesis be better
than the remaining hypotheses is a conjunctive statement,
and the conjunction of the difference in expected utility (we
use summation for conjunction) is the total selection error.

P{{{ W h)-U(hy,) > g)] <5 (2)

Each decision that the algorithm makes is a selection of
a single hypothesis A, from a set of hypotheses h;... h,.
This is represented by Equation (2) below, in which the
probability that the selected hypothesis A, is better than all
the rest within error € must be at least 1-0.

For fixed number of hypotheses #, a sufficient number
of samples m may always be taken to satisfy this condition
or show indifference.

Using the assumption of normality for the blocked
distribution (where ®(k) is the normal density function) and
blocking, it is straightforward to compute the confidence
(and correspondingly the selection error) in a pairwise

" In the Nidas stopping rule, the application of the triangle
inequality, which allows us to substitute the difference between
two estimated expected values for the difference between actual
expected values and estimated expected values, theoretically is not
valid, because of the distribution of crror over all of the pairwise
comparisons. In practice this estimation does not hurt the accuracy
of the criterion. For more information, see [Turmon, 1995]



comparison as a function of the number of samples m used
to produce the estimates, the accuracy parameter €, the
estimated utilities, and an estimated variance G°.

o =ol-vmpn)-om))or,) @

From this equation we can solve for the expected number of
samples required to satisfy the Nadas criterion for each

pairwise comparison using the normal cumulative
distribution function.
m = O [q)—l(a‘)]z
sel i (U(hxel ) N U\(h,))z i (4)

PAC learning requires the number of samples required to
satisfy this criterion to be theoretically bounded by a
polynomial function [Valiant, 1984], although in practice
the Nddas criterion appears linearly bounded.

4.2 Chernoff Bounds

Chernoff bounds are an effective non-parametric criterion
when the random variable is bounded above by constant B:

Pr(U(h)—U () > g)< exp(%} a

Solving equation 5 for m, we can determine the number of
samples required to satisfy the inequality. The estimate for
the number of samples required is calculated separately for
each blocked distribution. We can use this estimate of m to
compare the difficulties in satisfying the criterion across the
pairwise comparisons.
mS—leog(PrlU(h)—lf(h)>£D ©)
2¢°

The value B is estimated for each pairwise comparison from
the initial samples (in our case, 7 samples per hypothesis)
by finding the largest sample utility thus far, and
multiplying this difference by a scalar value. Our analysis
has shown that a sufficient generic scalar is 3, based on the
blocked distribution functions for these (and other) domains.

4.3 Hoeffding’s Inequality

In the case where the distribution of the random variable
cannot be estimated by a normal distribution, but the upper
and lower bounds of the data are known, Hoeffding’s
inequality can be applied. Hoeffding’s inequality uses both
the upper and lower bounds to evaluate the inequality:

S A -2m’e?
Pr(0(h)-O(h,)>e)<2exp —25 | @)

(b—a)

The number of samples to convergence is estimated for each
pairwise comparison as the inequality is applied to each
blocked distribution separately. The estimates are based on
the following equation (from equation 7):

—(b-a)* \/log[Pr [U (h)-Uh,)> gJ]
<

2
ed2

8)

m=

Hoetfding’s inequality, as in Chernoff bounds, estimates a,
b for each pairwise comparison from the initial samples (in
our case, 7 samples per hypothesis) by finding the minimum
and maximum sample utilities, and multiplying this by a
scalar value (as in Chernoff, 3).

4.4 Bernstein’s Inequality

Bernstein’s inequality bounds the maximum difference
between the expected utility and a single utility instance
(M). In the case where a variance estimate is known,
Bernstein’s inequality may give somewhat better results, but
at a minimum it will converge more quickly. Bernstein’s
inequality will tend to perform better when the variances of
the random variables are small.

Given lu,(h, )—U(h, )I<M

ol j for all i, j with

sel, f
probability I, then

—&'m (N

20°+2Me/3
The total number of satisfying samples for each blocked
distribution is based on the following equation (solving for
m in equation 9):
, 2M A A
- (20" + Tgllog(Pr[U (h)—U(h) > gD
m<

Pr(U(h‘w,, )= lj(hi) > 8) < exp

10)

2¢?
The value M is estimated for each pairwise comparison from
the initial samples by calculating the largest difference
between the utilities of two hypotheses on a single domain
problem, and multiplying this by a scalar value. To estimate
the M from initial samples, the following generic equation
was used for all three domains.

M =max(U(h, ) -, ,)| * 3 (1)

We can thus use such exponential inequalities to get
accurate bounds on the probability of incorrect selection,
retaining a probabilistic guarantee, while avoiding the
normality assumption.

5 Empirical Results

The four decision criteria were run on three different
domains described in Table 1. Unfortunately, at submission
time, the Hoeffding inequality runs had not produced
enough samples to be statistically significant (we hope to
have these results shortly). 1In all cases, we used the
quantile-quantile test described above to determine their
degree of normality.

For each of the three models, the Néddas stopping rule is
satisfied in the fewest number of samples, and scales
linearly for all three domains (see Table 1, Figure 2). The
other two criteria scale exponentially for all three domains,
with Bernstein’s criterion the lowest of the non-parametric
criteria. Because of the non-normality of the penetrator
domain, the scalar estimate of M was an over-estimate, and
the resulting number of samples for Bernstein’s criterion is
increased because of this over-estimate.



Name Description Shape outperforms Chernotf, we view Bernstein as more useful

Aeroshell | Design parameters for a lander | Normal when normality cannot be assumed (such as in the
aeroshell. Utility: appropriate entry penetrator domain).
velocity with minimum weight.  Each Although the cost of convergence depends on the run
Hypothesis: Floating-point dimensions time properties ot the algorithm itself and less on the
for aeroshell forebod}./ overl‘ap ’ ha}tcgne domain, the accuracy rate depends heavily whether the
angle, bluntness ration, fillet radius, . . .. e C .
outer diameter, and tail gcometry. assumptions .of th; (.1601§10n criteria are satisfied in the

Tmage Performance  of  lossless  image | Close (o blocked utility d].strlbutlons (Table 3).  Accuracy is

compression methods on Galileo image | Normal measured by running a deep sample of each hypothesis
data. Utility:  relative size of (2000 samples), and then comparing the rankings of the
compressed file. Hypotheses: Seven decision criteria with the actual rankings, including € error.
different compression programs.

Penetrator | Determine dimensions for a penetrator | Highly Algorithm | o/¢ Aeroshell | Image | Penetrator
(a small, robust probe). Utility: stability | Non- Nadas 2 0.93 1.0 0.64
under surface impact at high velocity in | normal Nédas 3 1.0 1.0 0.73
extreme cold. Each Hypotheses: Nidas 4 0.99 1.0 0.8
Floating-point dimensions for penetrator Bernstoin ) 1.0 1.0 0.99
outer diameter, total length. Bernstein 3 10 10 1.0

Table 2: D_escriptions of the three domains _anq distributions. Bernstein 4 1.0 10 0.99

The confidence rate for the Nddas criterion was held at Chernoff 5 0.48 0.08 1.0

95%. The error rates for all four criteria were determined Chernoff | 3 0.87 1.0 1.0

using the ratio o/e, which was set at 2, 3, 4 for each domain, Chernoff | 4 0.99 0.99 1.0

and as expected, the number of samples required for
convergence increases as this ratio increases. Note that for
the Chernoff and Bernstein inequalities, if the distribution
bounds are accurate, as the number of trials approaches
infinity, the accuracy should approach 1.0 (100%).

Aeroshell | Samples for 3 | Samples for 5 | Samples for 10
Domain Hypotheses Hypotheses Hypotheses
Criterion | Mean | Var Mean | Var Mean Var
Nédas 28.16 | 10.68 | 35.58 | 2.71 70.47 2.30
Bernstein | 58.38 | 24.82 | 104.05 | 24.96 | 3864.00 | 467.01
Chernoff | 302.37 | 35.62 | 833.47 | 56.92 | 4344.96 | 670.49

Table 3: Illustrative Aeroshell samples for three decision
criteria, showing the linear scaling of the Nadas criterion and
the exponential scaling of the other two criteria.

Samples Scaled for Three Domains

800 I —
700 Mean + Stdev
600 + Mean Samples
500 - Mean - Stdev

400
300
200
100

Samples

0
= @ = [9) = [0] o
gl e8| 28|28 £ 8¢
< E B o £ a; o E |3
2 5 | 2 5 | 2 5
< a a a
PAC | PAC | PAC | Bern | Bern | Bern | Cher | Cher | Cher

Criterion/Domain

Figure 1: Scaling of each criterion across the three domains.
These empirical results confirm that the Nadas
algorithm significantly outperforms the Bernstein, which in
turn outperforms the Chernoff algorithm. Because in our
experience a two-sided bound is not significantly harder to
estimate than a one-sided bound, and Bernstein significantly

Table 4: Accuracy measurements for the four criteria, with
different error ratios, for the three domains, on 3 hypotheses
(equivalent accuracy as the number of hypotheses grew).

6 Related Work

Much of this work descends from the COMPOSER
algorithm, developed by Gratch and DeJong, which uses the
Nadas stopping rule, but COMPOSER wuses a greedy
allocation scheme [Gratch et al., 1994]. The Probably
Approximately Locally Optimal (PALO) algorithm uses a
Chernoft-based stopping criterion and stops searching when
it has identified a near-local maximum with a high
probability, using hill-climbing [Greiner, 1992].

Maron and Moore propose using Hoeffding races,
which quickly prune inferior models using a PAC-learning
version of Hoeffding’s inequality and focus computational
efforts on selecting from the best models using brute-force
methods [Maron & Moore, 1993]. The improvements are
minimal using Hoeffding races unless there is a clear subset
of winners within the complete set of models.

Bayesian learning models are closely related to the
PAC models presented here. Bayesian models require the
specification of prior knowledge related to the causality of
random variables [Pearl, 1988]. Instead of relying on prior
knowledge, the algorithm presented here uses a frequentist
approach by continually adapting the statistical model to
include the most recently sampled utility. This approach
avoids using non-informative prior knowledge and in many
cases is equivalent to bayesian models [Gratch ef al., 1994].

7  Conclusion and Further Work

Currently, we are running simulations of the four decision
criteria on different domains with unique characteristics,
including sets with bimodal and Poisson distributions, to



determine the accuracy of the decision criterion for
alternative distributions. Prior probabilities can be included
in the decision criteria in order to incorporate prior
knowledge about the hypotheses into the current decision.
One algorithmic extension is to include prior knowledge in
the model and compare versions of the criteria with and
without encoded prior knowledge (based on the accuracy of
the knowledge). Another extension is to adjust expected
utility to include variance in the scoring.

This paper describes four decision criteria, evaluated on
three actual NASA selection domains. The results presented
in the paper indicate that the Nddas algorithm assuming
normality significantly outperforms the Bernstein algorithm,
with its two-sided bound, which in turn outperforms the
Chernoff algorithm, with a one-sided bound. In domains
where two-sided bounds can be found almost as easily as
the one-sided bound, we found Bernstein’s criterion of more
practical use. We also found that the accuracy rates of all
the algorithms are significantly affected by how well the
random variable satisfies the distribution knowledge
encoded in the decision criteria.
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